Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1328331.v1

ABSTRACT

Background: Identification of distinct clinical phenotypes in critically ill COVID-19 patients could improve understanding of the disease heterogeneity and enable prognostic and predictive enrichment facilitating more personalized treatment. However, previous attempts did not take into account temporal dynamics of the disease. By including the dimension of time, we aim to gain further insights into the heterogeneity of COVID-19.Methods: We used highly granular data from 3202 adult critically ill COVID patients in the multicenter Dutch Data Warehouse that were admitted to one of 25 Dutch ICUs between February 2020 and March 2021. Parameters including demographics, clinical observations, medications, laboratory values, vital signs, and data from life support devices were selected based on relevance and availability. Twenty-one consecutive datasets were created that each covered 24 hours of ICU data for each day of ICU treatment up until day 21. After aggregation and multiple imputation of the temporal data, clinical phenotypes in each dataset were identified by performing multiple cluster analyses. Clinical phenotypes were identified by aggregating values from all patients per cluster. Both evolution of the clinical phenotypes over time and patient allocation to these clusters over time were tracked.Results: The final patient cohort consisted of 2438 critically ill COVID-19 patients with a registered ICU mortality outcome. Forty-one parameters were chosen for the cluster analysis. On admission, both a mild and a more severe clinical phenotype were found. After day 4, the severe phenotype split into an intermediate and a severe phenotype for 11 consecutive days. Heterogeneity between phenotypes appears to be strongly driven by inflammation and dead space ventilation. During the 21-day period only 8.2% and 4.6% of patients in the initial mild and severe clusters remained assigned to the same phenotype respectively. The clinical phenotype half-life was between 5 and 6 days for the mild and severe phenotypes, and about 3 days for the medium severe phenotype.Conclusions: Patients typically do not remain in the same cluster throughout intensive care treatment. This may have important implications for prognostic or predictive enrichment. Prominent dissimilarities between clinical phenotypes are predominantly driven by inflammation and dead space ventilation.


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.06707v2

ABSTRACT

Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data. The consequence on clinical practice is that, when lacking results from a randomized trial, medical personnel is left without guidance on what seems to be effective in a real-world scenario. This article proposes a pragmatic methodology to obtain preliminary but robust estimation of treatment effect from observational studies, to provide front-line clinicians with a degree of confidence in their treatment strategy. Our study design is applied to an open problem, the estimation of treatment effect of the proning maneuver on COVID-19 Intensive Care patients.


Subject(s)
COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2106.02875v3

ABSTRACT

Modeling a system's temporal behaviour in reaction to external stimuli is a fundamental problem in many areas. Pure Machine Learning (ML) approaches often fail in the small sample regime and cannot provide actionable insights beyond predictions. A promising modification has been to incorporate expert domain knowledge into ML models. The application we consider is predicting the progression of disease under medications, where a plethora of domain knowledge is available from pharmacology. Pharmacological models describe the dynamics of carefully-chosen medically meaningful variables in terms of systems of Ordinary Differential Equations (ODEs). However, these models only describe a limited collection of variables, and these variables are often not observable in clinical environments. To close this gap, we propose the latent hybridisation model (LHM) that integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system and to link the expert and latent variables to observable quantities. We evaluated LHM on synthetic data as well as real-world intensive care data of COVID-19 patients. LHM consistently outperforms previous works, especially when few training samples are available such as at the beginning of the pandemic.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.10.20210591

ABSTRACT

Objective: Develop and validate models that predict mortality of SARS-CoV-2 infected patients admitted to the hospital. Design: Retrospective cohort study Setting: A multicenter cohort across ten Dutch hospitals including patients from February 27 to June 8 2020. Participants: SARS-CoV-2 positive patients (age [≥] 18) admitted to the hospital. Main Outcome Measures: 21-day mortality evaluated by the area under the receiver operatory curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from analysis. Results: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory & radiology values, were derived from 80 features. Additionally, an ANOVA-based data-driven feature selection selected the ten features with the highest F-values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression (LR) and non-linear tree-based gradient boosting (XGB) algorithm fitted the data with an AUC of 0.81 (95% confidence interval 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the ten selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age > 70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81) Conclusion: Both models showed excellent performance and had better test characteristics than age-based decision rules, using ten admission features readily available in Dutch hospitals. The models hold promise to aid decision making during a hospital bed shortage.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Heart Diseases
SELECTION OF CITATIONS
SEARCH DETAIL